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Abstract—The bending of plates on a Winkler foundation, according to Kirchhoff's theory, is
solved by using an original boundary integral equation method involving the fundamental solution
for plate flexure problems. An integral representation for the second member (pressure of the
foundation) of the equation is given. By discretizing the integral equation, it is possible to eliminate
the boundary unknowns, so that one is reduced to solving a linear system the solutions of which
are deflections inside the domain. To illustrate the potentialities of this method several problems
with various boundary conditions. loads and values of the modulus of the foundation are successfully
solved.

I. INTRODUCTION

Boundary integral equation formulation is a powerful method for solving problems in
continuum mechanics and particularly the bending of plates. Many formulations have been
developed|l, 2] but the most efficient are due to the simultancous works given in Refs [3-5].
More recently some authors have treated the very important problems of the behaviour
of plates on elastic foundations by using the boundary integral equations method. The most
significant works are those of Katsikadelis and Armenakas[6], Costa and Brebbia[7] and
Puttonen and Varpasuo[8] which use the fundamental solution of the differential equation.
This fundamental solution is a Kelvin function of the first order. Although the method
gives good results it presents the disadvantage that the rigidity enters into the fundamental
solution. Consequently :

(1) a change of rigidity changes the problems entirely (all the matrices should be
computed once again) ;

(2) it is not possible to treat a problem in which the rigidity of the foundation is not
a constant,

In this paper a boundary integral equation method is presented which does not have
these disadvantages. The fundamental solution is the one of plate flexure problems (which
does not involve the rigidity of the foundation) and the reactive force of elastic media are
computed as loads per unit area.

Examples are presented and the results are compared with analytical and numerical
solutions for different boundary conditions. Some examples of free boundaries are treated.

2. FORMULATION OF THE PROBLEM

Consider a plate subject to a transverse load p per unit area and let S be the interior
of the plate and I its boundary. According to Kirchhoft's theory of thin plate bending, the
transverse deflection w is governed by the following differential equation:

AAw = in§ (1

Ol

where A is the Laplacian, p the load per unit area, and D the flexural rigidity defined by
D = ER*/12(1 —v?), where A is the constant thickness of the plate, and £ and v Young's
modulus and Poisson’s ratio, respectively.
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In the case of a plate resting on a Winkler-type elastic foundation, the load p is given by
p=—kw+p o3
where k is the stiffness of the foundation and j the load applied on the plate. If the load

is a concentrated force F applied at a point P, one has §(Q) = F6(P- Q).
Consequently the differential equation of a plate on an elastic foundation is

AL
AAw = kD+D in S. 3)

3. BOUNDARY ELEMENT METHOD FOR PLATE BENDING PROBLEMS

Considering eqn (1). the boundary element formulation is now well established{2]. The
foundation of this method is the classical Rayleigh-Green identity generalized to a boundary
with N corners A,

1 . v ow
J;(L‘AAW—— wAAr) dS = D J; [—vl\,,(n) + n M. (w)— M, (v) F™
l N
+ K,,(v)w] dy— b Y [eMo(w) = M (0)w],. @)
i=1

By taking for v the singular function o(P, Q) = (1/8n)r’logr one obtains the integral
representation

pwP) = | Zods— ~ J [K oI =M, 5o+ 52 M) =0k, (o) [ ds
|5 p 1K T on  on "
I N
LS et -oma ol v
I-l

with # = 1 if PeSand § = 1/2if PeT and by derivation in the ng-direction at point P

L (py = f ALAN S J [GK"(") w— SM0) O
s T

2 dny s D dng D ong dnyg on
iR ov
-+ 5;;;—0—,; M, (w)— (‘7;;(“; K,,(W)] ds
1 aM, (v) dv
b .; [[W . EII;MM(W) . (6)

where r = || PQ|l, Pis a fixed point and Q a moving point; n is the outward normal at point
Q and n, the outward normal at point P of I"; K,(u) is the Kirchhoff transverse shear force
associated with the deflection field u; M,(u) is the normal flexure moment associated with
the deflection field u; M, (u) is the torsional moment for the deflection ficld « and [0],, is
the jump of the function which may occur at corners A4, of curvilinear abscissa s; defined
by [0]., = (0),r —(0),, .

Furthermore, the quantity M, {(w) at point Q can be expressed in terms of dw/dn

d dw
M, (%) = =D(1=v) T aLn )
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Along the boundary the known quantities are K,(w) and M,(w) on a free edge, w and
M,(w) on a simply supported edge or w and éw/én on a clamped edge. Consequently the
system obtained by eqns {5) and (6) can be solved easily.

4. BOUNDARY ELEMENT METHOD FOR PLATE ON ELASTIC FOUNDATION

A first formulation of this problem consists in taking the suitable fundamental solution
of eqn (3). This solution is known, it includes the Kelvin functions of the second kind, since
itis

1
o(P.Q) = — 3;-5\/ (?) Kei(p) ®

with

= rlJ(DJk).

This formulation has been used by all the authors who have treated this problem by
the boundary integral equation method[6-11]. The main objection of this procedure is the
difficulty in the evaluation of the integrals. It is necessary before integration to compute the
Kelvin functions, for instance by their expunsion in a Chebyshev series, and this for any
integration point. Moreover, p involves the valuc of the stiffness foundation &, consequently
all the kernels should be computed again when the value of & is modified.

The formulation proposed here uses the classical fundamental solution
v = (1/8n)r’logr, and replaces the pressure distribution in the foundation interface by the
load applied at cach node of a mesh used to discretize the plate domain,

In this way eqn (5) becomes

dv

| Py kw Lk NI
Bw(P) “J;Dl ds— ﬁ D v dS— D J;[I\,,(z)w M., (v) n + n M (W)
| s
-vK,,(w)} ds— P Y [wMa (o) — oM ()] 'C))

i=

To solve this new problem it is necessary to evaluate the integrals

W
J;/‘\ b‘l ds.

To do this the integral representation (5) is considered for a point P inside S. The expression
of w(P) is obtained at each point inside the domain, which allows the domain integrals to
be performed.

5. MATRIX FORMULATIONS

5.1. Matrix formulation of boundary integral equation
A matrix formulation for eqns (5) and (6) can be obtained by :

(1) a discretization of the boundary into g straight elements at the middle (nodal
points) of which are defined the value of deflection w, its normal derivative éw/dn, bending
moment M,(w) and transverse shear K,(w) ;

(2) a discretization of the domain S in m rectangular panels at the middle (nodal
points) of which are defined the value of the deflection w and the load per unit area j.
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For eqn (5) one obtains

-

w

1
3 {w} = [A]{K,} + [Br] (M.} +[Cr] { }*’[Dr] W +E) (p—kws} (10)

cn

and for eqn (6)

W

Lfew] , fe , .
5 {—”} = (A (K.} + (B (M} +(CH] {5;}+ [DF (w} +E (—kws). (1)

With eqns (10) and (11) the following formulation is performed :
[Gel i1} + Ul P} — [Ur] thws) = {0; (12)

where [Gr] is a 2q by 2q matrix, [/{] a 2¢ by m matrix, [/] the vector the 2¢ components of
which are the 2¢ boundary unknowns among w, ¢w/cn, M,(w) and K,(w); {p} and {w}
are vectors of m loads and pressure in the foundation interface. respectively. Subscript I’
shows that the matrices are obtained in the case of points P belonging to the boundary.

5.2. Matrix formulation of deflection inside S
In the same way as eqn (12) the identity (5) for P inside S can be written following a
matrix formulation:

twsh =[G {1} + U {p} = (Vs {hows) (13)

where [Gg) is an m by g matrix and [Ji] an m by m matrix.

The plate bending on an clastic foundation problem consists in solving simultaneously
cqns (12) and (13), since one has (2¢g + m) equations with (2¢ + m) unknowns. Nevertheless
it is more uscful to modify the formulation by the elimination of boundary unknowns {/}.

6. ELIMINATION OF BOUNDARY UNKNOWNS

It is possible to solve the system of eqns (12) and (13) which comprises (2¢ +m)
unknowns, but this leads to numerous equations and their treatment is expensive. In this
case a more convenicnt method consists of eliminating the unknowns on the boundary, so
as to obtain a smaller system of m equations for the m unknowns inside the domain.

In this way one can invert the matrix [Gy] to obtain from egn (12)

Uy = =[G 1] 18} = [Gr '] [Ur] ks (14)

where [GF '] is the inverse matrix of [G].
By substituting eqn (14) in eqn (13) one obtains

{

{wst = =[G4 [Gr ‘][-’r] {p)+[Js] {/3}
—[GS}[Gr 'TWUr] {hws) + 5] {kws) (15)

which can be written in the following lincar system of m equations as:
(kK] + 1D {ws} = —[K] {5} (16)
where

(K] = [Gs)(Gr "Vl = [Js] (17
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and [1] is the identity matrix. When system (16) is solved, the boundary unknowns can be
easily obtained by computing eqn (14).

7. NUMERICAL RESOLUTION

The boundary I' is approximated by a succession of straight segments g; of centre Q..
On each segment one has integrals such as

j S(Po. Q)g(Q) d5Q

where g(Q) stands for one of the unknowns w. éw/én, M, or K,. This unknown is supposed
to be constant over each segment. its value being that at the centre @, of the segment and
the integration of

J S(Po. Q) dsg

is carried out by a Gauss-Legendre integration method with ten points.

The domain § is divided into m finite pancls. The values of the deflection w and of the
load per unit arca § are defined at the centre point of cach pancl. Thus taking w and j
constant over each panel the surface integrations of kerncls are also performed by a Gauss-
Legendre method with 6 x 6 integration points,

8. NUMERICAL RESULTS

As applications of the previous formulation rectangular plates on elastic foundation
were studied.

For cach problem Poisson’s ratio is taken to be 0.3 and all the results for dimensionless
variables x/a und y/b are given where 2 and 26 are the side lengths and the origin is located
at the centre of the plate.

In all the cases the boundary has been divided into 48 straight segments and the domain
has been divided into 49 (7 x 7) or 77 (1 x 7) rectangular panels, respectively, when bla = |
or 1.6

Bounduary conditions are clamped, simply supported or free edges. Results presented
are deflections inside the domain, M, and K, along the edges.

These results are obtained for different values of & which varies between 0 (does not
rest on elastic foundation) and 25000/,

8.1. Clumped plate

This example has been treated by Costa und Brebbia[7] and with a Galerkin variational
method by Ng[12] for a uniformly loaded square plate.

Results for the variation of centre deflection, and at the middle of the edge for bending
moment M, (s} and transverse shear force K,(w) with various modulus & arc shown in Figs
1-3, respectively. One can see that for & = 2000/a* the results are in good agreement with
those given in Refs {7, 12] since for centre deflection one has a difference of 5% , and 7%
for the bending moment.

In Fig. 4 the present results are compared with those of Ng[12] for the variation of
centre deflection with b/a varying between 0 and 2. It can be scen that these results are in
good agreement.

8.2, Simply supported plate

For this boundary condition the present results arc compared with those of Katsikadelis
and Armenakas[6] for a 2a x 2b rectangular plate with h/a = 1.6. For the modulus coefficient
k = 625D/a* in Table | are given the value of the deflections at the plate centre and the

SAS 24:6-8
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Fig. 3. Clamped plate (2a x 2a) : variation of transverse shear force K, () at a middle side with &

for a load per unit area .



A new boundary element method for bending of plates on elastic foundations 563
4 i 4
For k = 200 OVb
—Ng[12]
4 Our results
6x 1073
2
5x 107F .
-3
wO 4x10 Q\
pb* 31073} +
-3 \+
2x 1077 \..,
1% 1073
1 1 1 i 1
1 12 14 1.6 1.8 20

/e

Fig. 4. Variation of maximum centre deflection with elastic support and aspect ratio for rectangular
plates.

Table L. Simply supported plate (2a x 2b, b/a = 1.6) : comparison of deflection centre values with Ref. [6] following
the application point (X, Y} of the concentrated load

Xi/a
Yiih 0 0.2 0.4 0.6 0.8
Present
work 0.503 x 10-* 0.324x 10?2 0.131x107? 0.328x 10" 0.168x107*
0 [6] 0.500 x 10 * 0.315x 102 0.129%x 10 0.343 < 10* 0.320x 10!
Percentage 7.5 3 1.5 4 —
Present
work 0.194x 10 °* 0.149x 10 ? 0.649 x 10~* 0.135x10-' —0251x10"*
0.2 (6] 0.192x10°? 0.145x10 ? 0.649 x 10 °? 0.150x 10" —0.105x10 *
Percentage 1 3 0.5 10 -
Present
work 0.200x 10} 0.139x 10"’ 0.832x10°° —0.695x10* —0.606x10"*
0.4 {6l 0.2[7x 10" 0.152x 10" 0.266x (0" —0499x10"* —0484x10"*
Percentage 8 8 — —_ -
Present
work —0855x 107 —0858x10"* —0.817x10™* —-0.653x10"* —0426x10*
0.6 {6) 0732 x 107" —-0742x107* —0.719x10* —0.582x10"* ~-0325x10"*
Percentage 16 16 14 12 —
Present
work —0393x107* -0.376x10"* —0314x10"* —-0230x10"* -0.173x10"*
0.8 (6] —-0361x10°*  —~0.340x10™* —0.281x10"* —0.195x10"* —0982x10"*
Percentage 9 10 12 18 —_

difference with Katsikadelis and Armenakas® results, obtained for a concentrated load
successively applied in points of coordinates (aa, 6) (x = 0, 0.2, 0.4,0.6, 0.8, and § = 0,
0.2, 0.4, 0.6, 0.8).

One can see very good accuracy for valucs of e and 8 < 0.6. When a2 or § = 0.6, results
show a difference up to 20% but it is obvious that values of deflections are very small, and
the disparity becomes greater than fora = f = 0. In fact for instance, deflection fora = 0.2,
B = 0.6is 2% of the deflection fora = = 0.

Finally in Fig. 5 the deflection along a symmetry axis is given for k = 50D/a*, 200D/a*,
500D/a* and 1500D/a*.

8.3. Cantilever plate

In this example the problem of a free boundary is solved. Consider a square plate
(2a x 2b, bfa = 1) loaded by a load per unit area. In Fig. 6 is given the value of deflection
at the point x/a = 1, and y/b = 0 (end of the symmetry axis). In Fig. 7 deflections along
the symmetry axis are shown for four values of k (k = 50D/a*, 200D/a*, 500D/a* and
1500D/a").
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Fig. 5. Simply supported plate (24 x 2b, b/a = 1.6): values of deflection on the symmetry axis for
a concentrated load at the centre.
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Fig. 6. Cantilever plate (2¢ x 24) : deflection at the point (x/a = |, y/a = 0) with k for a load per
unit area.
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Fig. 7. Cantilever plate (22 x 2a) : values of deflection on the symmetry axis for a load per unit area.

9. CONCLUSION

From this study it can be concluded that the previous formulation leads to accurate
results. The examples treated are not exhaustive since any problems with mixed boundary
conditions can be studied whatever the domain’s shape. This method gives a systematic
procedure to solve the plate on Winkler foundations, and presents all the advantages of the
boundary integral equation method. Moreover, as opposed with earlier works, it can be
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easily extended to foundations with a non-constant rigidity, or to unilateral elastic founda-
tion (w = 0), by replacing k in eqns (12) and (13) by a diagonal matrix and using if
necessary an iterative process.

Finally if one wants to modify the rigidity of the foundation, it is not necessary to

compute all the matrices in eqns (14) and (15), but only to calculate a new matrix (k[K] +{1])
and to solve the linear system, since k is not included in the fundamental solution contrary
to other integral formulations.
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